©2018 by Mind Brunch

 

Sea creature inspired water treatment method

Inspired by Actinia, a sea organism that ensnares its prey with its tentacles, a team of researchers has developed a method for efficiently treating water.



The research, a collaboration of the labs of Yale and Peking University, used a material known as a nanocoagulant to rid water of contaminants. By removing a broad range of contaminants in a single step, the discovery promises to significantly improve on the centuries-old use of coagulants for water treatment.


When added to water, conventional coagulants such as aluminum sulfate and other metallic salts remove larger particles from water by causing them to group together into larger formations and settle. Because these coagulants don't remove smaller particles dissolved in water, additional treatment methods are necessary. Employing multiple technologies for water treatment, however, is costly, energy-intensive and can require a large amount of land. Creating an efficient and easy-to-operate technology to remove all contaminants from water is key to addressing global water scarcity.


The research team synthesized a novel, highly stable nanocoagulant different from conventional coagulants in structure, performance and behavior. In additional to removing suspended particles, this nanocoagulant also removes small dissolved contaminants.

Actinia is a sea anemone with a spherical body that has tentacles that retract while resting and extend while catching its prey

Actinia is a sea anemone with a spherical body that has tentacles that retract while resting and extend while catching its prey. With this marine predator as their model, the researchers synthesized the coagulant, using organic and inorganic components to replicate the structure of Actinia.


Similar to Actinia, the nanocoagulant has a core-shell structure that turns inside-out in water. The shell destabilizes and enmeshes larger suspended particles, while the exposed core captures the smaller, dissolved ones. It removes a broad spectrum of contaminants, from trace micropollutants to larger particles, many of which elude conventional methods and pose significant public health concerns.

Source


#Water #Cleaning #Sea #Actinia